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ABSTRACT 

The adoption of numerical methods to simulate complex physical phenomena has 

improved significantly in the last decades thanks to the fast growth of computing 

hardware and algorithm developments. Numerical methods are based on a simplified 

physical (and consequently mathematical) model able to reproduce with a certain 

error the real physical phenomena. The accuracy of the model always depends on the 

level of approximations adopted and consequently on the uncertain input of the 

model. Gear dynamics is one of the most discussed topics in engineering because 

gears are the most common components adopted for power transmission. The 

methods adopted for gear design can be divided into four families: experiment 

method (EM), finite element method (FEM), traditional analytical method (AM), and 

multibody dynamics methods (MUBO). Recently, a novel MUBO model based on 

contact and having pseudo-rigid teeth (MUBOCO-PR) has been developed. It 

demonstrates very high accuracy on the evaluation of transmission error in static and 

dynamic conditions. However, it needs an a priori identification flexibility and 

contact parameters. In this study, an evaluation of the epistemic uncertainty in 

parameter identification is performed using the fuzzy arithmetic-based 

transformation method. The use of this method makes it feasible to accurately assess 

the contribution of each model parameter's level of uncertainty to the overall degree 

of uncertainty of the model output. The results, in terms of static TE, are reported and 

discussed. 

Keywords: Gear dynamics, Contact, Multibody model, pseudo-rigid model, 

epistemic uncertainty. 

1 INTRODUCTION 

Gear dynamics is one of the most discussed topics in engineering because gears are the most 

common components adopted for power transmission. For this reason, many researchers are 

actively working to develop sophisticated models for gear dynamic simulations capable of 

identifying vibrations generated by teeth impacts, optimizing the design process, and improving 

the current generation of diagnostic techniques. It has been demonstrated [1] that the variation of 

mesh stiffness, depending on the number of contact teeth and the flexibility of the gear, becomes 

a source of vibration in dynamic conditions. A meaningful parameter to evaluate this excitation is 

the transmission error (TE) that represents the deviation in position of the driven gear and the 

position it would occupy if the gear drive were perfectly conjugate [2]. 
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for the i-th gear (i=1,2), is the angular position, measured from the nominal position, and the base 

radii, respectively. The adoption of numerical methods to simulate complex physical phenomena 

has improved significantly in recent decades, thanks to the fast growth of computing hardware 

and algorithm developments. Numerical methods are based on a simplified physical (and 

consequently mathematical) model able to reproduce with a certain error the real physical 

phenomena. The accuracy of the model always depends on the level of approximations adopted 

and consequently on the uncertain input of the model. The methods adopted for gear design can 

be divided into four families: experiment method (EM), finite element method (FEM), traditional 

analytical method (AM) [3, 4, 5], and multibody dynamics methods (MUBO). FEs methods are 

accurate, but they lack generality and are very computationally demanding; AMs are hard to set 

because they need a complex pre-processing phase especially if the gears have specific profile 

characteristics or load variability [6, 7]; MUBO represent a good compromise between 

computational time and reliability. In MUBO the gears are generally considered as rigid bodies 

and the contact between the involute profiles is established through a detection method. 

Consistent with the approach in [8], the contact force generated at the contact point is based on a 

penalty contact force. Thanks to the multibody approach, it is possible to effectively represent the 

evolution of contact points along the profile, the friction of the surfaces, and it is also possible to 

assess the dynamic of the system under several operating conditions, such as variable torque or 

acceleration. In [9] a family of MUBO contact-based models able to consider the compliance of 

teeth through pseudo-rigid approach (MUBOCO-PR) has been introduced and compared. 

MUBOCO-PR is essentially a pseudo-rigid multibody system in which the teeth are considered 

as rigid bodies connected to the main body (the gear foundation) through specific joints located 

in the dedendum circle and an equivalent spring. In [10, 11] it has been demonstrated the high-

accuracy of the MUBOCO-PR in the evaluation of the transmission error both in static and 

dynamic conditions. As in all simplified models, even the MUBOCO-PR requires an a priori 

identification of the lumped parameters. In [10] a reliable approach to identify these parameters 

is provided. However, a systematic approach to estimate the uncertainty of the model is not 

already discussed. Actually, during the modeling process of multibody model simulations, 

different types of epistemic uncertainty may arise, and they can be categorized according to their 

origin and their nature. Namely, the uncertainty may be related to the lack of knowledge of the 

initial or operating conditions. Moreover, subjectivity in implementation, such as the use of 

various numerical approaches, will have an impact on the outcome, constituting another source 

of uncertainty. Lastly, but not least, it is crucial to include in the overall uncertainty evaluation the 

simplifications or idealizations made in the mathematical models to guarantee or facilitate the 

numerical evaluation. As reported in [12], these uncertainties can be successfully represented and 

quantified by fuzzy numbers within the context of comprehensive MB modelling, i.e. modelling 

both the system and potential uncertainties. Following the idea of Zade [13], Hanss [14, 15] 

proposed a novel method defined “transformation method” to describe the lack of certainty of the 

input parameters as fuzzy numbers and evaluate its propagation through the model. Thanks to this 

approach it is possible to provides a simple but very powerful tool for estimating the uncertainties 

of the output as fuzzy-valued quantities. This method is a very practical application of fuzzy 

arithmetic to solve complex engineering problems. However, the disadvantage of the 

transformation method is that it usually requires many physical models to be evaluated. 

Furthermore, the number of evaluations increases exponentially with the number of uncertain 

input parameters. In this study, an evaluation of the uncertainty of the MUBOCO-PR model is 

carried out using the fuzzy arithmetic-based transformation method [13] to evaluate the effects of 

the epistemic uncertainty of the MUBOCO-PR models. 

2 MULTIBODY MODEL DESCRIPTION 

MUBOCO-PR is a novel family of multibody gear models. It considers the teeth separated from 

the rim body and connected with them using a revolute joint placed near the root radius and an 

equivalent torsion spring, as reported in Figure 1. In this way, when a generic force acts on the 

teeth, the reaction force is balanced from the revolute constraint while the torsion spring satisfies 

the rotational equilibrium through the following equation: 
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where kφ and cφ are the spring stiffness and damping coefficients, respectively; nkφ, ncφ the 

exponents of the relative rotation and angular velocity, respectively; T0 the free length spring 

torque; φ the angle of the current rotation; φ0 the free angle. Assuming T0=0 and φ0=0, only four 

parameters, namely kφ, cφ, nkφ, ncφ, need to be identified. This approach makes it possible to 

consider the gear as a pseudo-rigid multibody model. The interaction between two or more gears 

occurs through the pseudo-rigid teeth. 

 
Figure 1. Schematic representation of MUBOCO-PR 

A detection method based on two steps (general detection and detailed detection) is adopted to 

identify which teeth must be considered for the contact [16]. Once two teeth enter in contact and 

the involute profiles overlap, a restitution force normal to the two profiles, is generated depending 

on the penetration and the penetration speed. The following equation describes how it is computed 

the normal restitution force: 
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where δ is the penetration, is the penetration speed, kcon and ccon are the stiffness and the damping 

coefficients, respectively, m1, m2 and m3 are the stiffness, the damping, and the indentation 

exponents, respectively. Considering this approach, we have four parameters able to influence the 

stiffness (and so quasi-static effects) and five parameters able to influence the damping (and so 

dynamic effects). In this paper, fuzzy logic is adopted for the stiffness coefficients only. 

3 EPISTEMIC UNCERTAINTY MODEL DESCRIPTION 

Fuzzy logic is, generically, a way to model logical reasoning where the truth of a statement is not 

a binary true or false like it is with classical (crisp) logic, but rather it is a degree of truth that 

ranges from zero which is absolutely false to the absolutely true one. Actually, classical set theory 

reaches its limits when the property that determines the membership of an element to a set is 

defined so that a clear belonging definition to that set is no longer possible. Forming a special 

class of fuzzy sets, the fuzzy numbers were defined and a new arithmetic based on their definition 

was created. 

Using fuzzy numbers to represent the input parameter of a mathematical model is a practical way 

to model the uncertainties inherent to the parameters. Each model parameter, described as a fuzzy 

number, is characterized by a membership function μ(x), 0 ≤ μ(x) ≤ 1, which reflect the degree of 

uncertain of the numerical quantification. The transformation method provides the 

implementation of fuzzy arithmetic and can be used to evaluate systems with fuzzy-valued 

parameters. The method is generally available in a reduced or general form, depending on the 

modality of consideration of fuzzy input values.  

In this case, where the general form is implemented, the main steps are reported in the flow 



diagram in Figure 2 and can be described as follows. The uncertain system is characterized by Np 

fuzzy-valued model parameters (li, i=1, …, Np) defined as shown in Figure 3. The first step of the 

method is the discretization of the inputs in a series of intervals assigned to the levels μj (j=1, …, 

Nc) of membership. As a result, the input is subdivided in a range of membership [0,1] by equally 

spaced Δμ=1/Nc gaps. At every membership cut, the intervals contain the first a(j) and the last b(j) 

value of the i-th li parameter, and Ns-2 linearly spaced values between these limits. In the second 

step, input intervals values of each parameter are combined at each membership cut, obtaining Nc 

arrays of Nsim elements. Here Nsim is calculated as: 
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Each array element represents a specific sample of possible parameter combinations and can be 

used as a set of input parameters for the model to be evaluated. Therefore, Nsim results of the model 

calculation are obtained and stored in Nc arrays of Nsim elements for each membership level. Then, 

all the arrays are sorted and transformed in the output intervals O(j)=[a(j), b(j)] at each membership 

level μj. The last step requires the aggregation of the output intervals constituting the fuzzification 

of the system result o. 

 
Figure 2. Flow chart of the transformation method. 

In addition, an analytical process is implemented after the model evaluation to quantify the effects 

of each fuzzy-valued input parameter li on the overall fuzzy model output o. A sensitivity factor, 

ρi, was defined for each input parameter to express the effect of its uncertainty on the overall 

uncertainty of the model output at each membership level μj or averaged across all the levels.  

The transformation method considers the model as a black box. This is a great advantage because 

it is possible to reduce fuzzy arithmetic to multiple crisp-number operations made on both the 

inputs and the outputs of the model simulation. For this reason, its implementation in existing 

software environments is relatively straightforward, and its area of application is not subject to 

restriction. 

 
Figure 3. A triangular fuzzy number representation. 

                

             

             

           

             

                          

 
 
 
 
  
 
 
 
 
 
  
 
  
 
 
 
 
 

     

        

      

     

        

      

     

        

       
  

 
 
 
 
  

 

 

 

   

  
 
        

 
      

        

       

   

       
 

  
 

   



4 NUMERICAL EXAMPLE 

The fuzzy-based transformation method is applied to a specific gear set to identify the epistemic 

uncertainty of the static transmission error (STE) calculation using the MUBOCO-PR model 

(Table 1). The input parameters that mainly influence the STE result are the two main stiffnesses: 

• the torsional stiffness of the torsion spring; 

• the contact stiffness. 

Cirelli et al. [10] reported that the stiffness of the torsion spring changes along the contact 

evolution. It is caused by several factors: the distance variation from the contact point and the 

position of the joint; the variation of the relative angle between the load direction and the tooth 

axis. Furthermore, because the contact stiffness depends on the curvature of the involute profile, 

even the contact stiffness is influenced by the position of the contact point. As a general rule, in 

MUBOCO-PR the values have been assumed constants and considered as the point of contact is 

on the working pitch circle. This choice agrees with the STE obtained with FEM simulations of a 

collection of meshing gears. However, it is significant to evaluate the influence of this appropriate 

choice on the model output by applying the transformation method.  

Table 1. Geometrical properties of adopted gears 

  Value Nomenclature UoM 

m  3 Module mm 

Z  50 Number of Teeth   

pd  150 Pitch Circle Diameter mm 


p  20 Pressure angle  deg 

b
d  140.95 Base Circle Diameter mm 

tip
d  156 Tip Circle mm 

root
d  141 Root Circle mm 

t  20 Tooth Width  mm 

fill
R  0.75 Fillet radius mm 

b  0.07 Backlash mm 

 

Therefore, two fuzzy triangular numbers were created, adopting the analytically defined modal 

value and the definition of the support limits. Support for a fuzzy number is defined as the base 

interval of the number. In other words, it represents the set of values at the zero level of the 

membership function thus the inherent total uncertainty of the parameter. 

 
Figure 4. The two fuzzy input parameters. On the left: the contact stiffness is shown. On the 

right: the torsion stiffness. 

The two input parameters for the fuzzy-based transformation method are shown in Figure 3. 

Considering the same scale for both plots, it can be seen that the support adopted for the contact 

stiffness is smaller than the support of the torsional spring stiffness. The dimension of the support 



depends on the data uncertainty level. For the contact stiffness computed with the Weber model 

[17] a limited range of variability has been recorded during the contact evolution. This leads to a 

limited range of support for contact stiffness. Conversely, the torsional stiffness value that 

introduces a relevant approximation in the model is defined with relatively larger support due to 

its changing along the meshing line. 

As Figure 4 shows, the selected membership function is a linear trend that increases as the limits 

of the set considered for each membership value decrease. After the definition of the two 

parameters as fuzzy numbers, following the transformation, the number of cuts (Nc) and the 

number of values to sample for each cut (Ns) were defined as reported in Table 2. 

Table 2. Properties of fuzzy input parameters. 

Parameter Modal value Support Dimensions Nc Ns 

Rotational spring stiffness 1.15E+07 [0.80, 1.50]E+07 Nmm/rad 6 7 

Contact stiffness 3.48E+06 [3.27, 3.69]E+07 N/mm 6 7 

 

Therefore, the combination at each cut is carried out, resulting in 49 simulation input sets to be 

evaluated for each level of membership. 

In order to evaluate the STE through the multibody simulations, an increasing rotational velocity 

and torque are imposed on the pinion and gear respectively. The velocity applied to the center 

revolute of the pinion follows a cubic ramp with the following algebraic expression: 

 )( 1,2,3p i i f fω (t)= step t, t , ω , t , ω , k =  (5) 

where ti, tf, ωi and ωf are the initial and final time and velocity values, respectively, and the 

function step(x ,x0, h0, x1, h1) has the following algebraic expression: 
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The maximum rotational velocity value is set at 0.1 rad/s. After the ramp, the velocity value 

remains constant for a period of time sufficient to eliminate any transient effect. The same 

procedure and ramp is applied for the imposed torque on the meshing gear. The stationary value, 

for the case here proposed, is set at 100 Nm. 

The result of each simulation is the STE along one meshing cycle. This STE output is selected in 

the stationary end phase of the simulation. Therefore, the output result is not only a single fuzzy 

number but a fuzzy function that varies along the meshing period. The variation of the value and 

the shape of the STE function with the changing of the stiffnesses can be evaluated. Moreover, 

all the results are compared with the quasi-static FEM results. 

As a reference model, a finite element 2D model in-plane strain condition is adopted. 2D modeling 

is necessary to save time calculations and it is an appropriate way to represent the physics of 

contact if used with awareness. Due to the large face width of the gears selected, a plane strain 

condition is suitable for this study. The elements adopted for 2D analysis are quadratic. Two 

revolute constraints are kinematic coupled with the hubs of the gears and a high mesh refinement 

is imposed in the contact region. The FEM results agree with the MUBOCO-PR solution with the 

two stiffness values set as the analytically defined modal value, as already presented in [10]. 

To systematically evaluate the sensitivity of the model output with respect to the fuzzy interval of 

uncertainty, the influence index is defined according with [14]. Its characterization lies on the 

calculation of the components of the gradient in each parameter direction. This computation must 



be performed at each level of the membership function. Thus, a series of different domains around 

the modal value are investigated and all the combinations at each membership level of the input 

parameters and the corresponding output are considered. For each membership level, it is possible 

to determine the g vector of Np elements, as the value obtained by summing the absolute value of 

the partial derivative in each i-th input parameter. 
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Consequently, a single value is computed for each parameter, considering all the membership 

levels. This value was evaluated through the calculation of the mean value of all the i-th elements 

of gj weighted with the level of membership. 
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The final sensitivity percentage is calculated as the ratio between the single parameter and the 

sum of all ki values. 
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5 RESULTS DISCUSSION 

The results from the model are summarized in Figure 5. The STE is shown throughout the mesh 

cycle, computed for each input combination. The FEM result is represented as a black line with 

cross marks, while, the series of crisp results obtained with the model simulation are highlighted 

with a continuous grayscale line that becomes lighter as the membership level decreases. 

 
Figure 5. STE.vs. meshing cycle for each input combination. 

Therefore, it is possible to create a fuzzy STE output at each meshing cycle position through the 

fuzzification process. 

 
Figure 6. Fuzzificated STE output along the meshing cycle (right). Particular fuzzy STE 

output at 0.2 meshing cycle ratio (left) 



Although the input parameters were defined as triangular fuzzy numbers, Figure 6 shows that the 

output STE, calculated through the MUBOCO-PR model, does not have the same membership 

shape. This reveals the nonlinearity of the system output with respect to the two stiffnesses. In 

particular, the decrease in the stiffness values increases the STE more than linearly. On the other 

hand, the output decreases less than linearly while the stiffnesses increase.  

Moreover, the influence of each input on the global output is performed by applying the fuzzy-

based transformation method. The sensitivity ratio ρi was first evaluated for the two input 

parameters at each membership level. 

 
Figure 7. Sensitivity ratios at each membership level along the meshing cycle period. 

Figure 7 shows the evolution of the sensitivity ratios at each membership level before the mean 

value ki is calculated. The ratios at each α-cut appears to maintain some key characteristic. Indeed, 

the sensitivity ratios of the two input parameters during the two-tooth meshing phase are 

constantly close to 0.5, which means they have almost the same influence on the STE uncertainty. 

Furthermore, the sensitivity ratio of the contact stiffness is continuously larger than the value of 

the torsional spring stiffness. However, it is possible to highlight that, with the increase in the 

membership level, there is a reduction in the overall uncertainty, leading to a decrease of the 

torsional spring stiffness sensitivity ratio with respect to the contact stiffness one. This 

phenomenon is related with the fact that the supports, and thus the level of total uncertainty 

selected for the two input parameters, are very different in amplitude. For this reason, at a low 

membership level, the sensitivity ratio of the torsional spring has a greater influence than at a high 

level. On the other hand, considering the high membership cuts, where the interval of uncertainty 

decreases towards the modal value, the importance of the contact sensitivity ratio increases. 



Furthermore, at every membership level, the nearly constant trend of the sensitivity ratios diverges 

during the transition phase in the number of teeth in contact. In particular, passing from two to 

one couple of teeth, the contact stiffness ratio gently rises and peaks in the region of the 

detachment of the second pair of teeth. During the one-tooth phase, the ratio returns at a value 

slightly higher than the previous phase but maintains the same constant trend. Then, with the 

engagement of the second couple of teeth, the sensitivity ratio returns to a value near 0.5. The 

presence of a double peak during the engagement of the second pair of teeth is due to the intrinsic 

asymmetry of the gear dynamics. Namely, the possible different behavior in the access and recess 

of the pair of teeth mating. 

Finally, the ratios at each membership level are averaged with the mean value weighted by the 

membership-level fraction. Figure 8 shows the overall influence indexes along the meshing cycle. 

Due to the presence of the weights in equation (8), the last membership cuts have more effect on 

the overall ratios evolution along the meshing period. However, all the membership levels affect 

its value, resulting in a comprehensive influence indexes related to the uncertainty of the inputs. 

The evolution of the index along the meshing cycle is characterized by the same main features of 

the ratios at every membership level. Namely, the fact that the influence index associated at the 

contact stiffness is constantly higher than the one related to the torsional spring stiffness. 

Moreover, the presence of the two peaks during the change in the number teeth mating can be still 

observed while the indexes remain constant in the other phases. 

 
Figure 8. Final sensitivity ratio of the two inputs along the meshing cycle 

6 CONCLUSIONS 

In this study, the fuzzy arithmetic-based transformation method is used to assess the epistemic 

uncertainty in the parameters of a multibody model contact based with pseudo-rigid teeth. The 

torsional stiffnesses between each tooth and the gear body and the contact stiffness are considered 

as fuzzy-valued input parameters. Thanks to this approach, it is shown possible to determine with 

consistency how much the level of uncertainty of each model parameter contributes to the overall 

level of uncertainty of the model output. The results, in terms of static transmission error, 

computed along the meshing cycle, confirm the expected nonlinearity of the model output with 

respect to the two inputs selected. Furthermore, it is shown that a linear decrease of the two 

stiffnesses is related to a more than linear increase in the STE. Owing to the fuzzy-based method 

adopted in this study, it was also possible to show that, although the uncertainty of the torsional 

stiffness is larger than the contact stiffness, the model sensitivity is almost equally influenced by 

the variation of the two inputs considered. Moreover, it is verified that the contact stiffness has a 

slightly more significant influence on the STE results at a high membership level or, in other 

words, near the analytically defined modal values. The relevant results demonstrate the 

potentiality of the method and put the basis for a more complex uncertainty evaluation of this type 

of dynamic gear model.  
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